아주대학교 수학과 2015년 8월 24일(월)

2015학년도 2학기 수학2 Tutor 강의 시연 문제지

※ 다음 문제 중 각자 배당된 유형의 문제를 풀어보고, 면접시간에 튜티에게 가르친다고 가정하고 발표한다. 면접자 상호간의 질문도 가능하니, 다른 유형의 문제도 풀어 보고 튜티의 입장에서 예상 가능한 질문을 생각해본다.

A형	Show that if $f(x,y)$ is differentiable at (x_0,y_0) , then (1) $D_{\overrightarrow{u}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \overrightarrow{u}$, where \overrightarrow{u} is a unit vector. (2) f increases most rapidly in the direction of the gradient at (x_0,y_0) .
Be	The following shows a continuous vector field \mathbf{F} and a smooth curve \mathbf{C} in the xy -plane. Which of the following statements are correct? Choose all. a) \mathbf{F} is a conservative vector field. b) \mathbf{F} is an irrotational vector field (that is, curl $\mathbf{F} = <0,0>$.) c) $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive. d) At the point \mathbf{A} , $\mathrm{div} \mathbf{F}$ is positive.
C형	Consider the surface G given by $z=\sqrt{1-y^2}$, $0\leq x\leq 1$. 1) Find the upward unit normal vector to G . 2) If the surface G is submerged in a fluid with the velocity vector field $\mathbf{F}=\langle \arctan y, -x, -2 \rangle$, calculate the flux across to G .